
PortFC: Designing High-performance Deadlock-free BCube
Networks

Peirui Cao
Nanjing University
Nanjing, China

caopeirui@nju.edu.cn

Rui Ning
Nanjing University
Nanjing, China

rning@smail.nju.edu.cn

Hongwei Yang
China Mobile
Beijing, China

yanghongwei@chinamobile.com

Zhaochen Zhang
Nanjing University
Nanjing, China

zhaochenzhang@smail.nju.edu.cn

Chang Liu
Nanjing University
Nanjing, China

liuchang_1307@168.com

Rui Li
Nanjing University
Nanjing, China

kevin_rui_li@outlook.com

Yongqi Yang
Nanjing University
Nanjing, China

yyq15280@gmail.com

Yunzhuo Liu
Nanjing University
Nanjing, China

445126256@qq.com

Chengyuan Huang
Nanjing University
Nanjing, China

huangchengyuan@nju.edu.cn

Tao Sun
China Mobile
Beijing, China

suntao@chinamobile.com

Xiaodong Duan
China Mobile
Beijing, China

duanxiaodong@chinamobile.com

Guihai Chen
Nanjing University
Nanjing, China

gchen@nju.edu.cn

Chen Tian
Nanjing University
Nanjing, China

tianchen@nju.edu.cn

Abstract
BCube is a modular data center network. Compared with other
topologies, BCube has natural advantages, such as lower deploy-
ment costs and stronger failure recovery capabilities. However,
RDMA technology used in BCube still faces challenges, includ-
ing high retransmission overhead, Head-of-Line Blocking (HoLB)
and deadlock problems. Existing solutions for traditional data cen-
ters cannot simultaneously address these issues due to the unique
topology and server transmission characteristics of BCube. In this
paper, we propose a per-port flow control named PortFC for BCube.
PortFC addresses the above problems through the designs of a
Pause/Resume control signal, a per-port queue allocation method,
an egress-detecting per-port flow control mechanism, and a server-
aware queue scheduling method. Our evaluation shows that PortFC
is free from retransmission, capable of eliminating HoLB and avoid-
ing deadlocks. PortFC achieves 1.7-8.0 times higher throughput and
reduces latency by 11.7%-87.7% compared to the state-of-the-art

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3725749

lossy RDMA based on IRN and the lossless RDMA method based
on PFC.

CCS Concepts
• Networks→ Link-layer protocols.

Keywords
Data Center Networks, Flow Control, Modular Data Center

ACM Reference Format:
Peirui Cao, Rui Ning, Hongwei Yang, Zhaochen Zhang, Chang Liu, Rui Li,
Yongqi Yang, Yunzhuo Liu, Chengyuan Huang, Tao Sun, Xiaodong Duan,
Guihai Chen, and Chen Tian. 2025. PortFC: Designing High-performance
Deadlock-free BCube Networks. In 2025 International Conference on Super-
computing (ICS ’25), June 08–11, 2025, Salt Lake City, UT, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3721145.3725749

1 Introduction
BCube [19, 21, 27, 32, 44, 45] as a representative modular data center
network has gained significant attention recently due to their high
flexibility, low construction costs, and strong resilience to handle
network node and link failures. Constructing high-performance
and stable networks on such architectures has become a focal point
for many researchers and service providers.

Corresponding authors: Zhaochen Zhang(zhaochenzhang@smail.nju.edu.cn) and Tao
Sun(suntao@chinamobile.com).

https://orcid.org/0000-0002-0222-4943
https://orcid.org/0009-0007-6516-5067
https://orcid.org/0000-0002-9071-4204
https://orcid.org/0000-0002-5725-3661
https://orcid.org/0000-0003-2621-2776
https://orcid.org/0009-0004-7363-1433
https://orcid.org/0009-0005-8045-8189
https://orcid.org/0000-0003-0156-2454
https://orcid.org/0000-0002-6079-6579
https://orcid.org/0009-0003-3491-8813
https://orcid.org/0009-0004-0942-6419
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0003-2710-7628
https://doi.org/10.1145/3721145.3725749
https://doi.org/10.1145/3721145.3725749

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA P. Cao et al.

Remote Direct Memory Access (RDMA) over Converged Eth-
ernet Version 2 (RoCEv2) offloads network stacks into hardware
and lays the foundation for constructing networks with both high
throughput and low latency. However, with the rapid increase in
link bandwidth, the throughput of devices cannot match that of
links, and RDMA networks face a high risk of packet loss, leading
to severe performance degradation. Even with a low packet drop
rate (0.4%), the application-level goodput can degrade to zero [20].
This problem is further highlighted in BCube architectures, where
low-end switches with smaller buffers are often chosen for higher
cost-efficiency.

There are two general approaches to cope with RDMA packet
loss. One is to perform loss recovery when packet loss occurs,
as exemplified by the state-of-the-art method IRN [33]. IRN en-
hances network performance and reduces unnecessary queuing
without relying on Priority Flow Control (PFC) by implementing
efficient loss recovery mechanisms and Bandwidth-Delay Product
flow control (BDP-FC) in the NIC. This design is referred to as lossy
RDMA. In contrast, the another approach is lossless RDMA, which
avoids packet loss by enabling PFC. However, neither approach
truly brings RDMA to its full potential under BCube, as they suffer
from the following key limitations:

• High retransmission overhead. Loss recovery methods
like IRN rely on a timeout threshold to determine packet
loss and trigger retransmission. However, an appropriate
timeout threshold is often variable and difficult to obtain,
particularly in BCube where the relay path is more com-
plex. A small threshold can decrease latency but causes large
amounts of spurious retransmissions that degrade network
throughput. In contrast, a large threshold reduces spurious
retransmissions but leads to high retransmission latency.

• Unnecessary Head-of-Line Blocking (HoLB). PFC en-
sures a lossless RDMA network but faces severe HoLB prob-
lems. HoLB problems occur when a flow at the front of a
queue experiences a delay or is blocked, causing all sub-
sequent flows in the same queue but to different destina-
tions to be delayed as well. Existing methods that alleviate
HoLB problems focus on more general network architec-
tures where the destinations of flows in a queue can vary
greatly. However, the intrinsic architecture of BCube greatly
reduces such possibilities, making it possible to further re-
duce HoLB problems by appropriately scheduling the queues.
Existing methods ignore this feature of BCube and suffer
from unnecessary HoLB.

• Network paralysis caused by deadlock. In BCube, servers
also participate in relay forwarding, increasing the complex-
ity of the network paths. Additionally, switch queues are
influenced by the next two-hop switches and servers, not
just by adjacent switches. This makes existing solutions in-
effective in truly resolving deadlocks in BCube, which can
lead to network paralysis.

To bring RDMA to its full potential under BCube architectures,
this paper presents PortFC, a per port flow control method that
simultaneously achieves high throughput and low latency. PortFC
addresses the key limitations through the following designs: First,

PortFC enables lossless RDMA by using a Pause/Resume signal-
based flow control mechanism similar to PFC and is free from
retransmission. Second, by designing a per-port queue allocation
(§3.2) to match the BCube topology (§3.1) and egress-detecting per-
port flow control method (§3.3) to solve the HoLB problems, PortFC
guarantees low latency and high throughput. Finally, PortFC pro-
poses a deadlock-free strategy (§3.4) that utilizes queue scheduling
combined with the server-aware feature that servers can also act as
forwarding nodes to eliminate potential deadlock loops in BCube.
We implement PortFC (§4) on Tofino2 switch [4] and DPDK [15],
and our evaluation (§5) shows that PortFC achieves the following
performance:

• Deadlock-free and HoLB-free. Our evaluation on the NS3
simulator shows that PortFC successfully avoids deadlock
and HoLB problems in BCube.

• High throughput and low latency. The throughput of
PortFC outperforms IRN, Go-Back-N and improved PFC de-
sign by 1.7-2.3 times and 2.4-21.6 times, 1.9-8.0 times, re-
spectively. Compared to IRN, Go-Back-N and improved PFC
design, PortFC reduces the Flow Completion Time (FCT) and
tail latency by 11.7%-69.2%, 58.4%-97.9% and 19.8%-87.7%, re-
spectively.

• Scalability. PortFC demonstrates significant performance
gains across different topology sizes, various traffic patterns
in the simulation experiments.

Ethics Statement: This work does not raise any ethical issues.

2 Background and Motivation
2.1 Bring BCube into Focus
The network topology is one of the key factors affecting data center
network performance, playing a significant role in fault recovery
capability, ease of scale expansion, communication bandwidth, and
network latency within data center networks. A good network
topology architecture should possess high scalability, efficient uti-
lization of switches and servers, and high fault tolerance. Research
related to BCube [19, 21, 27, 32, 44, 45] has gained significant atten-
tion in recent years.

BCube [19] allows servers to participate in forwarding, and can
be modularly and recursively expanded. As illustrated in Figure 2,
BCube adopts a hierarchical and modular design where servers
not only act as end hosts but also participate in packet forwarding,
effectively serving as part of the switching fabric. Firstly, BCube
provides well flexibility for data center migration, deployment,
and scalability. Secondly, BCube supports common communication
patterns efficiently and offers higher bottleneck throughput with
lower deployment costs, as it requires fewer switches and has lower
performance demands on them. Lastly, BCube demonstrates greater
stability in handling switch and server failures due to its multiple
equivalent paths and switch layers, ensuring good transmission
performance even during failures.

Nowadays, the bandwidth of data center network [7, 8, 49] links
is rapidly advancing; 100Gbps links have been widely deployed,
200Gbps links are gradually being adopted, and the standardization
of 400Gbps Ethernet links is in progress [43, 47]. However, the
growth rate of network device buffers is far from keeping pace with
the increase in link bandwidth [3]. As shown in Figure 1, since 2010,

PortFC: Designing High-performance Deadlock-free BCube Networks ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

0 5 10 15 20 25 30
Forwarding ability (Tbps)

20

40

60

80

100

120
Bu

ffe
r s

ize
 /

Fo
rw

ar
di

ng
 a

bi
lit

y
(u

s) Trident (2010)

Trident2 (2012)
Tomahawk (2014)

Tomahawk2 (2016)
Tomahawk3 (2017)

Tomahawk4 (2019)

Figure 1: The trends in switch chip architecture.

16

0 1 2 3

17

4 5 6 7

18

8 9

19

10 11 12 13 14 15

20 21 22 23

server switch

Figure 2: BCube topology example.

the ratio of switch buffer size to its forwarding ability has decreased
by 3.6 times [6, 16, 18].

This development trend in network devices indicates that traffic
within the network is becoming more bursty and harder to control.
However, the commercial off-the-shelf (COTS) micro switches used
in BCube networks typically lack large buffers. As a result, BCube
networks are prone to packet loss due to switch buffer overflow
when facing increasingly bursty traffic. Packet loss often leads to
higher retransmission delay, thereby negatively impacting the user
experience at the application layer. Furthermore, in common traffic
patterns within data centers, such as computational traffic and
storage traffic, there are many-to-one incast scenarios [42]. Shallow-
buffer switches are also highly susceptible to buffer exhaustion in
a short time during large-scale incast traffic, leading to packet loss.

2.2 Deploy RDMA over Ethernet in BCube
2.2.1 BCube Based on RoCEv2 Networks. Large vendors [5, 20, 27,
29] have begun large-scale deployment of RDMA in data centers
to achieve better network performance. Since IB technology is
closed-source and many already deployed data centers are based on
Ethernet networks [12], there have been advanced RoCE designs,
e.g., Resilient RoCE [39], IRN [33] etc., that could work with a lossy
network. However, supporting RoCE in lossy networks requires
handling packet retransmission using timeouts, selective acknowl-
edgments, etc., which may not only complicate the NIC design but
also hurt network latency and throughput performance. As a result,
lossy RDMA may not be able to substitute lossless RDMA in all
cases. Therefore, we focus on BCube networks with lossless RoCEv2
(RDMA over Converged Ethernet v2) [2] and conduct extensive
experiments to confirm that our design outperforms lossy RDMA
designs in BCube networks.

However, current lossless RDMA algorithms are mainly designed
for switch-centric tree topologies and are not suitable for BCube.
Current research on BCube primarily focuses on traffic scheduling

Data

Pause/Resume

Xoff Xon
Remained buffer

Upstream port Downstream port

Figure 3: The PFC mechanism.

Flow 1

Flow 2

Node C

Ingress Egress

Flow 3

Congestion point
Congestion detection

Node B

Node A

Pause

(a) Ingress detection.

Flow 1

Flow 2
Ingress Egress

Flow 3

Node B

Node A Node C

Congestion point
Congestion detection

Pause

(b) Engress detection.

Figure 4: HoLB examples in BCube.

optimization, routing algorithm design [11, 22], fault diagnosis [31,
46] and has yet to fully explore how to implement refined flow
control strategies at the link layer to directly ensure the effective
operation of lossless networks.

2.2.2 Head-of-Line Blocking Issues in BCube. PFC [1] is a flow
control algorithm that supports RoCEv2 in a lossless network. As
Figure 3 shows, PFC sets𝑋𝑂𝐹𝐹 and𝑋𝑂𝑁 as threshold values for the
ingress port queue of the switch. When the length of the ingress
port queue exceeds 𝑋𝑂𝐹𝐹 , the downstream receiver sends a Pause
message to halt the transmission from the upstream sender. Con-
versely, once the length of the ingress port queue falls below 𝑋𝑂𝑁 ,
the receiver sends a Resume message to restart the transmission
from the sender. When the headroom (the remained buffer between
the total buffer size and 𝑋𝑂𝐹𝐹) is greater than one BDP, the switch
buffer will not overflow. PFC causes serious Head-of-Line Block-
ing (HoLB) when different flows share the same nodes. As shown
in Figure 4(a), the congestion point affects both flow 1 and flow
2 simultaneously. Traditional PFC mechanisms conduct conges-
tion detection at ingress ports of nodes, which cannot recognize
which specific flow is congested; hence, Pause frames are triggered
to pause transmission at the ports of node A and node B. Conse-
quently, the victim flow 3 will also be paused. Although the number
of switch layers in the BCube is low, the Pause frame can still be
transmitted to another switch through relay server nodes.

If we change the congestion detection from ingress ports to
egress ports, we can conveniently mark all flows at the egress ports
and then simply send Pause frames with the congestion information
to the upstream switches. Simultaneously, we can use the priority
queue to distinguish and manage victim flow 3 and congested flow
2, as shown in Figure 4(b). Unfortunately, trivial queue allocations
will lead to unbearable resource costs. Fortunately, we can utilize
the BCube topology features (§3.2) with the penetrate server to
synchronize congestion information to multi-hop switches and con-
duct per-port flow control (§3.3), requiring only a limited number
of queues to achieve high performance.

2.2.3 Existing Works Fail to Resolve Deadlock in BCube. Under the
Pause/Resume mechanism of PFC, due to the presence of loops in

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA P. Cao et al.

Switch queue

Server queue

Data flow 1 direction

Data flow 2 direction

Control flow direction

Figure 5: A deadlock example in BCube.

the network, multiple flows may enter the same queue, causing con-
gestion, which then propagates hop-by-hop through the network,
eventually forming a pause loop, which is called Circular Buffer
Dependency (CBD). Then, every port is waiting for the congestion
to be alleviated at the next hop, resulting in a situation where each
node in the loop cannot send packets, leading to a deadlock.

In BCube topologies, there is still no effective solution to date.
Previous works about deadlock prevention can be divided into two
groups. One is to restrict the method of routing in order to avoid
appearance of CBD [20, 48, 50]. The other is to manage buffers
in the queue more properly to avoid deadlock [25]. However, the
former causes waste of bandwidth in data center and reduce per-
formance, which is unacceptable. The latter always creates many
priority levels, which is expensive for practice. Both of them cannot
obtain desirable outcomes in BCube. Figure 5 illustrates a potential
deadlock scenario in a two-dimensional BCube. The figure assumes
the presence of two four-hop flows in the network, with the flow
control algorithm deployed at the switches, and the servers merely
forwarding flow control information received from downstream
switches. These two flows form a loop across six nodes in the net-
work.When a queue at one of the switches within this loop becomes
congested, as shown by the red arrow, the pause messages form
a loop with the host’s forwarding Every switch queue within this
loop is in a paused state, waiting for the downstream switch queue
to empty, thus causing the deadlock issue.

2.3 Goals
To address the aforementioned features and challenges, we propose
PortFC to meet the following goals. To the best of our knowledge,
PortFC is the first approach to implement per-port flow control us-
ing distinct switch/server egress-port queue allocations to achieve
a high-bandwidth, low-latency, deadlock-free BCube network.
G1: Retransmission-free. The PortFC needs to dynamically ad-
just upstream node transmission based on the buffering capacity of
downstream switches. It is important to minimize the occupancy
of switch buffers while ensuring that the transmission from up-
stream nodes does not cause the buffers of downstream switches to
overflow. This approach not only enables lossless data transmission
at the link layer but also effectively reduces the queuing delay of
packets during transmission by utilizing short queue strategies,
thereby optimizing overall network performance and efficiency.
G2: HoLB-free. PortFC should be designed to exploit the intrinsic
feature of BCube architectures to eliminate HoLB problem, while
minimizing the utilization of switch hardware resources.
G3: Deadlock-free. The design of PortFC should avoid deadlocks.
In a BCube network, servers can perform routing functions to for-
ward packets to other nodes. It is necessary to design a flow control

algorithm that ensures control messages do not create deadlocks in
the network.

3 Design
3.1 BCube Structure
It is necessary to briefly introduce the construction method of the
general BCube Data Center network. 𝐵𝐶𝑢𝑏𝑒 (𝑛, 𝑘), (𝑘 ≥ 1) is a
recursively defined structure, consisting of 𝑛 𝐵𝐶𝑢𝑏𝑒 (𝑛, 𝑘 − 1) units
and 𝑛𝑘 switches, each with 𝑛 ports. Each server in 𝐵𝐶𝑢𝑏𝑒 (𝑛, 𝑘) has
𝑘 + 1 ports, which are connected sequentially to 𝑘 + 1 switches from
layer 0 to layer 𝑘 . According to the above definition, the number
of servers in 𝐵𝐶𝑢𝑏𝑒 (𝑛, 𝑘) is 𝑛𝑘+1, and the number of switches is
(𝑘 + 1)𝑛𝑘 . These switches are distributed across layers 0 to 𝑘 , with
𝑛𝑘 switches at layer 𝑘 −1. As shown in Figure 6, 𝐵𝐶𝑢𝑏𝑒 (4, 0) within
the dashed box consists of one 4-port switch and four servers, and
four 𝐵𝐶𝑢𝑏𝑒 (4, 0) units are connected through four 4-port layer-one
switches to form 𝐵𝐶𝑢𝑏𝑒 (4, 1). It is noteworthy that servers located
in the same position in each 𝐵𝐶𝑢𝑏𝑒 (4, 0) are connected through the
same layer-one switch.

Instead of ingress port queue detection, which is used by PFC
algorithm, the flow control in this paper detects congestion based
on the egress port queue. Detecting network congestion at the
egress port to control congested traffic can alleviate the HoLB issue
associated with ingress port flow control algorithms. Specifically,
the queue allocation scheme of the BCube per-port flow control
algorithm designed in this paper is divided into two types: switch
port queue allocation and server port queue allocation.

3.2 Per-port Queue Allocations
3.2.1 Two Types of Queues for Switch Ports. In the BCube, the ad-
jacent nodes of a switch are all servers, allowing the traffic flowing
through the switch to be divided into two categories. The first cate-
gory is traffic that needs to be forwarded by the next-hop server
because the next-hop server is not the destination server. The sec-
ond is traffic reaching the destination server at the next hop.

As shown in the bottom right corner of Figure 6, there are several
flows: 𝐹11, 𝐹12, 𝐹13, 𝐹14 from server 11, 𝐹15 from server 3 and 𝐹16
from server 7. Considering the simple case where the next hops of
flows are their destinations respectively, and 𝐹11 and 𝐹16 should be
queued in the same queue𝑄3 as server 15 is the next hop of switch
23. For the other flows, the situation is relatively more complex.
Assume all ports and queues are indexed starting from 0 on the
left-hand side. In the next switch where the flows will be forwarded,
𝐹12 and 𝐹13 will be forwarded from port 0 and port 1 of switch
19 respectively, while 𝐹14 and 𝐹15 will be forwarded from port 2
of switch 19. Corresponding to the forwarding ports, 𝐹12, 𝐹13 are
queued in 𝑄0, 𝑄1 respectively, and 𝐹14, 𝐹15 are both queued in
𝑄2. Moreover, there’s a high-priority queue (𝐻𝑄) for storing some
control messages in the network (like ACK and CNP messages).𝐻𝑄
enables control information to be preferentially transmitted in the
network without being affected by flow control, achieving lower
latency. Specifically, when there are packets in 𝐻𝑄 , the scheduler
will prioritize sending them. Since the control information occupies
little bandwidth, it hardly blocks the transmission of data packets.

The queue allocation strategy of the BCube per-port flow control
algorithm at the switch port is based on which egress port the

PortFC: Designing High-performance Deadlock-free BCube Networks ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

16

0 1 2 3

17

4 5 6 7

18

8 9

19

10 11 12 13 14 15

20 21 22 23

server switch

Q0 Q1 Q2 Q3 Q4 Q5 RQ HQ

F1

F2 F3 F6 F7 F8

F9
F1: 15→0

F2: 15→1

F3: 15→2

F4: 15→4

F6: 15→12

F7: 15→13

F8: 15→14

F9: 11→12

4-Hop
Traffic

2-Hop
Traffic

Relay
Traffic

F10: 7→12

F4 F10

Q0 Q1 Q2 Q3 HQ

F12 F13

F14 F11

F11: 11→15

F12: 11→12

F14: 11→14

F13: 11→13

F15: 3→14

F16: 7→15

F15 F16

F1 F9 F16

High-priority messages,
eg: ACK, CNP, etc.

Figure 6: The BCube structure and example of queue allocation on the port of switches and servers.

packet will go through at the next-2-hop switch (since the next
hop connected by the BCube switch is a server). The packet is
placed into the queue corresponding to the egress port of the next-
2-hop switch at the current switch port. If the packet reaches its
destination at the next hop, it is placed into a separate queue. The
number of queues is allocated based on the number of ports on
the downstream switch, which ensures that BCube per-port flow
control uses minimal hardware resources on the switch.

For an 𝐵𝐶𝑢𝑏𝑒 (𝑛, 𝑘) topology, where each switch has 𝑛 ports,
only 𝑛 − 1 queues are needed at each switch port to store packets
destined for the 𝑛 − 1 possible egress ports of the next-hop switch.
Additionally, only 1 queue is needed to store packets that reach the
destination server at the next hop. If needed, 1 high-priority queue
can also be added. In summary, in the design of the per-port flow
control (§3.3), each port of a switch in the 𝐵𝐶𝑢𝑏𝑒 (𝑛, 𝑘) topology
only requires 𝑛 + 1 queues.

3.2.2 Three Types of Queues for Server Ports. In the BCube topol-
ogy, there are three types of traffic at the server ports. The first type
is the four-hop traffic originating from the server itself. The second
type is the two-hop traffic originating from the server itself. The
third type is traffic originating from other servers, which needs to
be forwarded by the current server. For these three types of traffic,
the per-port flow control algorithm provides different queue alloca-
tion schemes. In an 𝐵𝐶𝑢𝑏𝑒 (𝑛, 𝑘) topology, each switch has 𝑛 ports.
The first type of four-hop traffic originating from the server will be
placed into queues numbered from 0 to (𝑛 − 2) based on the egress
port number of the next-hop switch (with 𝑛 − 1 possible values).
The second type of two-hop traffic originating from the server will
be placed into queues numbered from (𝑛 − 1) to (2𝑛 − 3) based on
the egress port number of the next-hop switch (with 𝑛 − 1 possible
values). The third type of traffic, which needs to be forwarded by
the server, will be placed into a ’relay queue’ numbered (2𝑛 − 2).

In the top right corner of Figure 6, an example of queue allocation
at switch ports is presented. Flows are categorized into three types
as mentioned before. Four-hop traffic includes 𝐹1, 𝐹2, 𝐹3, and 𝐹4.
For example, 𝐹1 traverses switch 19, server 12, switch 20 and finally
reaches server 0, and the other flows in this type follow a similar
path. Two-hop traffic consists of 𝐹6, 𝐹7, and 𝐹8, which pass through
switch 19 and then reach their respective destinations. Relay traffic
contains 𝐹9 and 𝐹10, flowing only via server 15.

For the queue allocation at the port of server 15 connected
to switch 19, for four-hop traffic, since 𝐹1 and 𝐹4 are forwarded

through port 0 of switch 19, they are queued in 𝑄0. 𝐹2 and 𝐹3 are
queued in 𝑄1 and 𝑄2 respectively. For two-hop traffic, 𝐹6, 𝐹7, and
𝐹8 are queued in𝑄3,𝑄4, and𝑄5 respectively as they are forwarded
through port 0, port 1, and port 2 of switch 19 respectively. For the
relay flows 𝐹9 and 𝐹10, they are both queued in 𝑅𝑄 . Analogous to
switch queue allocation, 𝐻𝑄 is used to store high-priority packets.

From the above example, it can be seen that the queue allocation
on the server is slightly more complex than on the switch. This
more refined classification makes it more convenient for per-port
flow control algorithms to manage traffic (§3.3), resulting in finer
granularity and better control effects. Even so, in an 𝐵𝐶𝑢𝑏𝑒 (𝑛, 𝑘)
topology, the number of port queues on the server is still linearly
proportional to the number of switch ports. Specifically, in the
𝐵𝐶𝑢𝑏𝑒 (𝑛, 𝑘) topology, the traffic originating from the server can be
divided into 𝑘 + 1 types according to the number of hops, with each
type requiring 𝑛 − 1 queues (corresponding to 𝑛 − 1 possible egress
port choices for the next hop) for storage, one queue as a relay
queue to hold packets that need to be forwarded by the server, and
one high-priority queue. In summary, in an 𝐵𝐶𝑢𝑏𝑒 (𝑛, 𝑘) topology, a
server port requires a total of (𝑘 +1) × (𝑛−1) +2 queues (where 𝑘 is
generally less than or equal to 4). Current commercial switches can
generally support dozens or evenmore than one hundred queues[16,
18, 41], so the queue allocation scheme designed in this paper can
still support large BCube networks and has good scalability.

3.3 Per-port Flow Control
In designing the per-port flow control algorithm for BCube, con-
gestion detection occurs at the switch’s egress port. Based on §2.2.2
analysis, compared to ingress-port-based congestion detection al-
gorithms, egress-port-based ones effectively mitigate HoLB caused
by the impact of congested traffic on non-congested traffic.

This section will detail the control logic of per-port flow control
in the BCube network through three parts: congestion detection
and mitigation at switch ports, server handling of flow control
messages, and switch handling of flow control messages.

3.3.1 Congestion Detection and Mitigation. In §3.2.1, the allocation
of two types of queues on the switch is described. Thus, in the
per-port flow control algorithm of BCube, two sets of congestion
detection and mitigation thresholds are defined. For the queues in
the switch’s egress ports that store the traffic for the next two hops,
which pass through different egress ports of the switch (𝑛−1 queues,
numbered from 0 to 𝑛 − 2), the congestion threshold 𝑋𝑜 𝑓 𝑓 and the

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA P. Cao et al.

congestion mitigation threshold 𝑋𝑜𝑛 are set. For the second type of
queue, which stores traffic where the next hop is the destination
server (1 queue, numbered 𝑛 − 1), the congestion threshold 𝑋𝑜 𝑓 𝑓
and the congestion mitigation threshold 𝑋𝑜𝑛 are set.

Algorithm 1 Packet reception operation at the switch egress port
in 𝐵𝐶𝑢𝑏𝑒 (𝑛, 𝑘).
1: 𝑞𝐼𝑑𝑥 = 𝐺𝑒𝑡𝑄𝐼𝑑𝑥 (𝑝𝑎𝑐𝑘𝑒𝑡)
2: if 𝐶ℎ𝑒𝑐𝑘𝐵𝑢𝑓 𝑓 𝑒𝑟𝐴𝑑𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛 (𝑝𝑎𝑐𝑘𝑒𝑡 .𝑠𝑖𝑧𝑒) == 𝑓 𝑎𝑙𝑠𝑒 then
3: Buffer overflow, drop this packet.
4: else
5: 𝑞𝑙𝑒𝑛 = 0
6: if 𝑞𝐼𝑑𝑥 < 𝑛 − 1 then
7: 𝑖𝑑𝑥 = 0
8: while 𝑖𝑑𝑥 < 𝑛 − 1 do
9: 𝑞𝑙𝑒𝑛 = 𝑞𝑙𝑒𝑛 + 𝑞𝑢𝑒𝑢𝑒𝐿𝑒𝑛[𝑖𝑑𝑥]
10: 𝑖𝑑𝑥 + +
11: end while
12: if 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝐼𝑠𝑃𝑎𝑢𝑠𝑒𝑑 == 𝑓 𝑎𝑙𝑠𝑒 & 𝑞𝑙𝑒𝑛 >= 𝑋𝑜𝑓 𝑓 then
13: 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝐼𝑠𝑃𝑎𝑢𝑠𝑒𝑑 = 𝑡𝑟𝑢𝑒

14: for All other ports do
15: 𝑃𝑎𝑢𝑠𝑒𝐹𝑟𝑎𝑚𝑒=𝐺𝑒𝑛𝐹𝑟𝑎𝑚𝑒 (𝑃𝑎𝑢𝑠𝑒,𝑞𝐼𝑑𝑥)
16: 𝑆𝑒𝑛𝑑𝑇𝑜𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 (𝑃𝑎𝑢𝑠𝑒𝐹𝑟𝑎𝑚𝑒)
17: end for
18: end if
19: else if 𝑞𝐼𝑑𝑥 == 𝑛 − 1 then
20: 𝑞𝑙𝑒𝑛 = 𝑞𝑢𝑒𝑢𝑒𝐿𝑒𝑛[𝑛 − 1]
21: if 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝐼𝑠𝑃𝑎𝑢𝑠𝑒𝑑==𝑓 𝑎𝑙𝑠𝑒 & 𝑞𝑙𝑒𝑛 ≥ �̂�𝑜𝑓 𝑓 then
22: 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝐼𝑠𝑃𝑎𝑢𝑠𝑒𝑑 = 𝑡𝑟𝑢𝑒

23: for All other ports do
24: 𝑃𝑎𝑢𝑠𝑒𝐹𝑟𝑎𝑚𝑒=𝐺𝑒𝑛𝐹𝑟𝑎𝑚𝑒 (𝑃𝑎𝑢𝑠𝑒,𝑞𝐼𝑑𝑥)
25: 𝑆𝑒𝑛𝑑𝑇𝑜𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 (𝑃𝑎𝑢𝑠𝑒𝐹𝑟𝑎𝑚𝑒)
26: end for
27: end if
28: else
29: return.
30: end if
31: end if

Detection of congestion occurrence on switches. When a
packet arrives at the egress port of a switch, congestion detection is
performed. The detailed logic is shown in Algorithm 1. Lines 4 to 18
of Algorithm 1 present the processing logic when a packet enters the
first type of queue in 𝐵𝐶𝑢𝑏𝑒 (𝑛, 𝑘). In this paper, the length of these
𝑛 − 1 queues and whether they exceed the congestion threshold are
used as the criteria for determining whether the port is congested.
When a packet is received at the egress port of a switch and enters
the first type of queue, the lengths of the first type of 𝑛 − 1 queues
are checked to see if they exceed the congestion threshold 𝑋𝑜 𝑓 𝑓 . If
they do, a pause message (containing the queue number and the
congested port number) is sent upstream to the ports connected
to other ports, pausing the queues corresponding to the congested
port at the port of upstream node.

Similar to the operation when the first type of queue receives
a packet, the logic for detecting whether congestion has occurred
when a packet is received by the second type of queue, which stores
packets whose next hop is the destination, is given in lines 19 to 27
of Algorithm 1. Additionally, the flow control algorithm proposed in
this paper does not control the transmission of the highest priority.

Since such packets are usually few, if a packet belongs to the highest
priority, congestion detection is not performed for the highest-
priority queue, as shown in line 29 of Algorithm 1.

Algorithm 2 Packet transmission operation at the switch egress
port in 𝐵𝐶𝑢𝑏𝑒 (𝑛, 𝑘).
1: 𝑞𝑢𝑒𝑢𝑒𝐿𝑒𝑛[𝑞𝐼𝑑𝑥] = 𝑞𝑢𝑒𝑢𝑒𝐿𝑒𝑛[𝑞𝐼𝑑𝑥] − 𝑝𝑎𝑐𝑘𝑒𝑡 .𝑠𝑖𝑧𝑒

2: 𝑞𝑙𝑒𝑛 = 0
3: if 𝑞𝐼𝑑𝑥 < 𝑛 − 1 then
4: 𝑖𝑑𝑥 = 0
5: while 𝑖𝑑𝑥 < 𝑛 − 1 do
6: 𝑞𝑙𝑒𝑛 = 𝑞𝑙𝑒𝑛 + 𝑞𝑢𝑒𝑢𝑒𝐿𝑒𝑛[𝑖𝑑𝑥]
7: 𝑖𝑑𝑥 + +
8: end while
9: if 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝐼𝑠𝑃𝑎𝑢𝑠𝑒𝑑 == 𝑡𝑟𝑢𝑒 & 𝑞𝑙𝑒𝑛 <= 𝑋𝑜𝑛 then
10: 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝐼𝑠𝑃𝑎𝑢𝑠𝑒𝑑 = 𝑓 𝑎𝑙𝑠𝑒

11: for All other ports do
12: 𝑅𝑒𝑠𝑢𝑚𝑒𝐹𝑟𝑎𝑚𝑒=𝐺𝑒𝑛𝐹𝑟𝑎𝑚𝑒 (𝑅𝑒𝑠𝑢𝑚𝑒,𝑞𝐼𝑑𝑥, 𝑝𝑜𝑟𝑡𝐼𝑑𝑥)
13: 𝑆𝑒𝑛𝑑𝑇𝑜𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 (𝑅𝑒𝑠𝑢𝑚𝑒𝐹𝑟𝑎𝑚𝑒)
14: end for
15: end if
16: else if 𝑞𝐼𝑑𝑥 == 𝑛 − 1 then
17: 𝑞𝑙𝑒𝑛 = 𝑞𝑢𝑒𝑢𝑒𝐿𝑒𝑛[𝑛 − 1]
18: if 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝐼𝑠𝑃𝑎𝑢𝑠𝑒𝑑 == 𝑡𝑟𝑢𝑒 & 𝑞𝑙𝑒𝑛 <= �̂�𝑜𝑛 then
19: 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝐼𝑠𝑃𝑎𝑢𝑠𝑒𝑑 = 𝑓 𝑎𝑙𝑠𝑒

20: for All other ports do
21: 𝑅𝑒𝑠𝑢𝑚𝑒𝐹𝑟𝑎𝑚𝑒=𝐺𝑒𝑛𝐹𝑟𝑎𝑚𝑒 (𝑅𝑒𝑠𝑢𝑚𝑒,𝑞𝐼𝑑𝑥, 𝑝𝑜𝑟𝑡𝐼𝑑𝑥)
22: 𝑆𝑒𝑛𝑑𝑇𝑜𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 (𝑅𝑒𝑠𝑢𝑚𝑒𝐹𝑟𝑎𝑚𝑒)
23: end for
24: end if
25: else
26: return.
27: end if

Detection of congestion mitigation on switches. When a
queue at the egress port of a switch is about to send a packet, the
congestion state of the switch needs to be reassessed, checking
whether the current queue length meets the condition for conges-
tion mitigation. Lines 3 to 15 of Algorithm 2 present the logic for
determining congestion mitigation when sending a packet from
the first type of queue. This determination is based on whether the
lengths of the 𝑛 − 1 queues are less than the given threshold 𝑋𝑜𝑛 .
Similar to the congestion mitigation and sending congestion miti-
gation messages to upstream nodes for the first type of queue, lines
16 to 24 of Algorithm 2 provide the logic for handling congestion
mitigation for the second type of queue on the switch. Similarly, no
flow control logic is applied to the highest-priority packets when
they are sent.

The variable 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝐼𝑠𝑃𝑎𝑢𝑠𝑒𝑑 is used to determine whether it
is necessary to send a control message upstream, which ensures
that the same congestion or congestion mitigation information is
not repeatedly reported to the upstream nodes.

3.3.2 Handling Messages at Servers. Since there are two types of
queues on the switch that can generate flow control messages,
there are corresponding operations to receive these two types of
flow control messages on the upstream server. First, the server
parses the content of the flow control message to determine the
congested (or congestion-mitigated) port number downstream, the

PortFC: Designing High-performance Deadlock-free BCube Networks ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

queue number causing the congestion (or congestion mitigation),
and the type of control message (Pause or Resume). As shown in
lines 4 to 11 of Algorithm 3, when a server receives a flow control
message generated by the first type of queue on the switch, it sets
the corresponding state for its own first 𝑛 − 1 queues based on the
type of control message for the queue numbered 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑𝑄𝐼𝑑𝑥 .
Because in the BCube topology, traffic is classified into four-hop
traffic and two-hop traffic.When a server receives a control message
from the first type of queue on a downstream switch, it means that
the four-hop traffic sent by the server may continue to congest the
downstream port numbered 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑𝑃𝑜𝑟𝑡𝐼𝑑𝑥 , so the local queue
corresponding to the congested downstream port should be paused.

If the server receives a flow control message from the second
type of queue on the downstream switch, it indicates that the queue
on the downstream switch destined for the next-hop server is con-
gested. This traffic may be two-hop traffic originating from the
server or four-hop traffic from a further upstream point. Thus, the
corresponding queue numbered 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑𝑃𝑜𝑟𝑡𝐼𝑑𝑥 in the second
type of queue on the server (numbered from (𝑛 − 1) to (2𝑛 − 3))
should be paused since the packets in this queue will aggravate
the congestion in the downstream port. As shown in line 14, an
offset of 𝑛 − 1 must be added to the queue number indicated by
𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑𝑃𝑜𝑟𝑡𝐼𝑑𝑥 . The above logic corresponds to lines 12 to 20 in
Algorithm 3. Additionally, lines 21 to 23 show that the server needs
to propagate the flow control message further upstream to control
the effect of the four-hop traffic sent from the upstream on the
congested port. If the server does not forward this pause frame, the
upstream switch may keep sending packets to the server, resulting
in the accumulation of packets on the server, causing more queuing
delay and thus affecting the throughput rate.

Observing the server’s response to congestion in the two types of
queues on the downstream switch, it can be noted that congestion
caused by traffic in the first type of queue on the switch (traffic
that needs to be forwarded by the next-hop server) will only pause
the corresponding queue on the upstream server of that switch. In
contrast, congestion caused by traffic in the second type of queue on
the switch (queues storing traffic for which the next-hop server is
the destination server) will pause both the corresponding queue on
the upstream server and the corresponding queue on the upstream
switch. Since new congestion is not detected at the server, in the
flow control algorithm designed in this paper, congestion will at
most propagate three hops in the network.

3.3.3 Handling Messages at Switches. The processing of control
messages received by the switch is relatively straightforward, as
described in Algorithm 4. When the switch receives a flow control
message, it first parses the port information of the downstream
switch that is congested (or congestion-mitigated) and the type of
the flow control message (Pause or Resume). Based on the type of
the flow control message, the switch then pauses or resumes the
sending operation for the queue corresponding to the congested
port.

3.4 Deadlock-free Strategy
The example of deadlock in BCube, as Figure 5 shows, is basi-
cally discussed in §2.2.3. This paper analyzes the root cause of the
BCube deadlock scenario: Not only switch-forwarded traffic, but

Algorithm 3 Handling flow control messages received by the
switch in 𝐵𝐶𝑢𝑏𝑒 (𝑛, 𝑘).
1: 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑𝑄𝐼𝑑𝑥 = 𝑓 𝑟𝑎𝑚𝑒.𝑞𝐼𝑑𝑥

2: 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑𝑃𝑜𝑟𝑡𝐼𝑑𝑥 = 𝑓 𝑟𝑎𝑚𝑒.𝑝𝑜𝑟𝑡𝐼𝑑𝑥

3: 𝑡𝑦𝑝𝑒 = 𝑓 𝑟𝑎𝑚𝑒.𝑡𝑦𝑝𝑒

4: if 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑𝑄𝐼𝑑𝑥 < 𝑛 − 1 then
5: 𝑞𝐼𝑑𝑥 = 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑𝑃𝑜𝑟𝑡𝐼𝑑𝑥

6: if 𝑡𝑦𝑝𝑒 == 𝑃𝑎𝑢𝑠𝑒 then
7: 𝑞𝑢𝑒𝑢𝑒𝑆𝑡𝑎𝑡𝑒 [𝑞𝐼𝑑𝑥] = 𝑃𝑎𝑢𝑠𝑒𝑑

8: else
9: 𝑞𝑢𝑒𝑢𝑒𝑆𝑡𝑎𝑡𝑒 [𝑞𝐼𝑑𝑥] = 𝑅𝑒𝑠𝑢𝑚𝑒

10: 𝑞𝑢𝑒𝑢𝑒 [𝑞𝐼𝑑𝑥] .𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑆𝑒𝑛𝑑 ()
11: end if
12: else if 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑𝑄𝐼𝑑𝑥 == 𝑛 − 1 then
13: 𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 𝑛 − 1
14: 𝑞𝐼𝑑𝑥 = 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑𝑃𝑜𝑟𝑡𝐼𝑑𝑥 + 𝑜 𝑓 𝑓 𝑠𝑒𝑡
15: if 𝑡𝑦𝑝𝑒 == 𝑃𝑎𝑢𝑠𝑒 then
16: 𝑞𝑢𝑒𝑢𝑒𝑆𝑡𝑎𝑡𝑒 [𝑞𝐼𝑑𝑥] = 𝑃𝑎𝑢𝑠𝑒𝑑

17: else
18: 𝑞𝑢𝑒𝑢𝑒𝑆𝑡𝑎𝑡𝑒 [𝑞𝐼𝑑𝑥] = 𝑅𝑒𝑠𝑢𝑚𝑒

19: 𝑞𝑢𝑒𝑢𝑒 [𝑞𝐼𝑑𝑥] .𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑆𝑒𝑛𝑑 ()
20: end if
21: for All other ports do
22: 𝑅𝑒𝑙𝑎𝑦𝐹𝑟𝑎𝑚𝑒𝑇𝑜𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 (𝑓 𝑟𝑎𝑚𝑒)
23: end for
24: else
25: assert error.
26: end if

Algorithm 4 Handling flow control messages received by the
switch in 𝐵𝐶𝑢𝑏𝑒 (𝑛, 𝑘).
1: 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑𝑃𝑜𝑟𝑡𝐼𝑑𝑥 = 𝑓 𝑟𝑎𝑚𝑒.𝑝𝑜𝑟𝑡𝐼𝑑𝑥

2: 𝑡𝑦𝑝𝑒 = 𝑓 𝑟𝑎𝑚𝑒.𝑡𝑦𝑝𝑒

3: 𝑞𝐼𝑑𝑥 = 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑𝑃𝑜𝑟𝑡𝐼𝑑𝑥

4: if 𝑡𝑦𝑝𝑒 == 𝑃𝑎𝑢𝑠𝑒 then
5: 𝑞𝑢𝑒𝑢𝑒𝑆𝑡𝑎𝑡𝑒 [𝑞𝐼𝑑𝑥] = 𝑃𝑎𝑢𝑠𝑒𝑑

6: else
7: 𝑞𝑢𝑒𝑢𝑒𝑆𝑡𝑎𝑡𝑒 [𝑞𝐼𝑑𝑥] = 𝑅𝑒𝑠𝑢𝑚𝑒

8: 𝑞𝑢𝑒𝑢𝑒 [𝑞𝐼𝑑𝑥] .𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑆𝑒𝑛𝑑 ()
9: end if

also server-forwarded traffic in BCube, can formCBD loops, causing
deadlocks. Unlike traditional PFC, where all traffic at both switches
and servers is placed in a single queue, this paper designs a queue
allocation strategy and flow control logic that successfully break
the flow control loop, effectively avoiding the aforementioned dead-
lock issue. Unlike improved PFC [26], the queue allocation policy
proposed in this paper can be summarized as follows: at the switch,
traffic is divided into two types: traffic that needs to be forwarded
by the next-hop server and traffic for which the next-hop server is
the final destination.

These two types of traffic are placed into two different queues,
denoted as 𝐴 type queues and 𝐵 type queues, respectively. At the
server, the traffic types are slightly more complex and divided into
three categories: four-hop traffic originating from the server, two-
hop traffic originating from the server, and traffic from other servers
that needs to be forwarded by the current server. These three types

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA P. Cao et al.

b Ba A

a

A

b

B Switch queue

Server queue

Data flow direction

Control flow direction

Figure 7: Avoiding deadlocks in BCube.

of traffic are placed into three different queues, denoted as 𝑎, 𝑏, and
𝑐 , respectively.

𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑄𝐵 ≥ 𝑋𝑜 𝑓 𝑓 =⇒
𝑃𝑎𝑢𝑠𝑒 (𝑠𝑒𝑟𝑣𝑒𝑟𝑖−1𝑄𝑏)
𝑃𝑎𝑢𝑠𝑒 (𝑠𝑤𝑖𝑡𝑐ℎ𝑖−2𝑄𝐴)

(1)

𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑄𝐴 ≥ 𝑋𝑜 𝑓 𝑓 =⇒ 𝑃𝑎𝑢𝑠𝑒 (𝑠𝑒𝑟𝑣𝑒𝑟𝑖−1𝑄𝑎) (2)
The congestion propagation path after detecting congestion at

the switch egress port is briefly illustrated in Figure 7. As described
in §3.3.2, when congestion is detected in an 𝐴 type switch queue,
the signal will be propagated to an 𝑎 type queue in previous-hop
server. In the other case, when congestion occurs in a 𝐵 type queue,
the congestion message will be transmitted to a 𝑏 type queue in
previous-hop server and an 𝐴 type queue in switch respectively.
Moreover, we can describe the process of congestion propagation
more formally with two equations. Equation 1 and Equation 2 show
the situations where upstream queues are paused after congestion
is detected at the switch. As shown in Equation 1, one scenario
where congestion occurs at the egress port of the 𝑖𝑡ℎ hop switch
is when its 𝐵 type queue becomes congested. This congestion will
pause the 𝑏 type queue at the 𝑖 − 1 hop server and the𝐴 type queue
at the 𝑖 − 2 hop switch. Assuming the 𝐴 type queue of the 𝑖 − 2 hop
switch also becomes congested due to being paused, according to
Equation 2, this congestion will further pause the 𝑎 type queue at
the 𝑖−3 hop server. Therefore, when the 𝐵 type queue of the 𝑖𝑡ℎ hop
switch becomes congested, the congestion propagates at most three
hops to the 𝑖 − 3 hop server before pausing. Another scenario is
described in Equation 2, where the𝐴 type queue at the egress port of
the 𝑖𝑡ℎ hop switch becomes congested. In this case, the congestion
only propagates to the previous hop, the 𝑖 − 1 hop server, and does
not spread further upstream. Combining the above analysis, it can
be seen that the queue allocation strategy and congestion control
logic designed in this paper effectively prevent the continuous
propagation of congestion, thereby preventing deadlock.

4 Implementation
We implemented the PortFC prototype on Tofino2, a state-of-the-
art programmable switch [4] ASIC with Reconfigurable Match
Table (RMT) architecture. A packet in Tofino2 first traverses the
ingress pipeline, followed by the traffic manager (TM) and finally
the egress pipeline. Each pipeline has multiple stages, each capable
of doing stateful packet operations. Ingress/egress ports are stati-
cally assigned to pipelines. In this section, we briefly describe the
key modules of the prototype.

4.1 Switch Queue Management
Queue Assignment Manager: An arriving packet first undergoes
a standard processing procedure, including parsing and control.

Henceforth, the packet enters the queue assignment manager. Our
queue assignment manager assigns queues to different traffic ac-
cording to the destination of flows, which have been parsed during
the ingress pipeline. In detail, we leverage the address character-
istics of BCube rather than relying on static forwarding tables for
routing. For packets destined for hosts within the same node, they
can be easily identified by the same subnet, while for packets des-
tined for hosts outside the node, we determine the corresponding
queue number by calculating the IP address modulo the node size.
By utilizing BCube’s address properties, our approach both helps to
save switch storage space and avoids potential single-point failures
that may arise from fixed routing tables.
Queue Depth Gatherer: We need queue depth information in the
ingress pipeline for pausing and resuming. With an inbuilt feature
Ghost Thread tailored for this task in Tofino2, the traffic manager
can communicate the queue depth information for all the queues
in the switch to all the ingress pipelines without consuming any
additional ingress cycles or bandwidth.
Signal Packet Emitter: When the queue depth triggers the Pause
or Resume threshold, the signal packet emitter leverages the packet
trigger functionality to construct signal packets, such as Pause and
Resume. Upon receiving a Pause or Resume, the module engages
Tofino2’s AFC (Advanced Flow Control) mechanism to pause (or
resume) the queue.

4.2 Server Queue Management
We also implemented the PortFC prototype on DPDK, a set of
libraries and drivers for fast packet processing. With the zero-copy
ability of DPDK, we can implement extremely fast user-defined
data plain forwarding program. In this section, we briefly depict
the server-side prototype of PortFC.

According to the DPDK[15] documentation, the maximum queue
number under optimal NIC performance for each port is 32, while
our design only requires 4 queues on each port. For queue assigner,
unlike the switch configurationmentioned earlier, we classify traffic
based on both its source and destination on the server side. For the
signal packet responder, we pause or resume the appropriate queue
according to the contents of the signal packet.

5 Evaluation
In this section, we conduct NS3 simulations to evaluate the per-
formance of PortFC and answer the following questions: 1) How
effective is the PortFC? We compare PortFC’s performance to state-
of-the-art lossless PFC* and the lossy IRN, besides traditional PFC
and Go-Back-N algorithms. 2)What are the reasons for the excellent
performance of PortFC? We investigate the reasons through the
evaluation of various metrics in different scenarios. 3) How is the
scalability of PortFC? We validate the scalability of PortFC through
experiments with different scales and various traffic patterns.

5.1 Experimental Setup
Network Topology:We select 𝐵𝐶𝑢𝑏𝑒 (4, 1) and 𝐵𝐶𝑢𝑏𝑒 (8, 1) as the
simulation experiment topologies to evaluate the performance of
PortFC. 𝐵𝐶𝑢𝑏𝑒 (4, 1) consists of 16 servers and 8 switches. Its struc-
ture is shown in Figure 6 specifically. Additionally, we also conduct
experiments on the larger 𝐵𝐶𝑢𝑏𝑒 (8, 1) topology, which consists of

PortFC: Designing High-performance Deadlock-free BCube Networks ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

64 servers and 16 switches, to further evaluate the scalability and
performance of PortFC. The link bandwidth in the aforementioned
topologies is set to 100Gbps, the link delay to 1us, and the switch
buffer size to 5MB.
Congestion Control: We use DCQCN [51] as the congestion con-
trol scheme for all of our experiments. We set 𝐾𝑚𝑖𝑛 = 100𝐾𝐵,
𝐾𝑚𝑎𝑥 = 400𝐾𝐵 and 𝑃𝑚𝑎𝑥 = 0.2 based on the previous works [29,
41]. For the rest of the parameters, we follow the recommendations
in the Mellanox firmware [34].

102 103 104 105 106 107

Flow Size(Bytes)

0.00

0.25

0.50

0.75

1.00

CD
F

Storage
Hadoop
WebSearch

Figure 8: The CDF graph of traffic patterns.

Traffic Patterns: We evaluate the performance of PortFC on three
common traffic patterns (WebSearch, Hadoop, and Storage [29, 37]).
The three common traffic patterns have very distinct flow size
distributions, as shown in Figure 8. It demonstrates that their traffic
distributions are very different, which enhances the generalizability
of the experiment. We use the three traffic patterns to generate a
traffic workload with Poisson arrival distribution. Additionally, we
generate incast traffic by using 8 servers in 𝐵𝐶𝑢𝑏𝑒 (4, 1) and 32
servers in 𝐵𝐶𝑢𝑏𝑒 (8, 1) to send to one server respectively, with each
flow fixed at 1MB in size. The incast traffic is combined with the
traffic generated from the three common traffic patterns to increase
network congestion and more realistically simulate data center
network traffic.
Baselines: In PortFC, congestion onset and relief thresholds are
set for the two types of queues (§3.2.1) at the switch’s egress ports.
We compare PortFC with PFC, PFC*, IRN and Go-Back-N algo-
rithms. For example, PortFC uses thresholds proportional to the
BDP, with 𝑋OFF = 6 · BDP and 𝑋ON = 4 · BDP, while PFC/PFC*
adopts the same 𝑋OFF and 𝑋ON values. IRN aligns its parameters
with prior work [33], setting 𝑅𝑡𝑜high = 320𝜇𝑠 , 𝑅𝑡𝑜low = 100𝜇𝑠 , and
𝑅𝑡𝑜𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 3. The 𝑅𝑡𝑜 of Go-Back-N is set to 10ms. Note that
if we use traditional PFC in BCube, its deadlock will cause the FCT
to become very large, and the throughput even degrades to zero
within the timeout period. Therefore, the results are not shown in
some experimental figures for better visual clarity.

In PFC*, drawing on the queue cutover strategy from Tag-
ger [25], we enhance PFC to avoid partial deadlocks, segregating
traffic into distinct queues at each hop. In fact, this approach may
require too many lossless priorities to eliminate all deadlocks [50].
In IRN, we align the settings of the three parameters with those
in IRN[33], which 𝑅𝑡𝑜𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝑅𝑡𝑜𝑙𝑜𝑤 and 𝑅𝑡𝑜ℎ𝑖𝑔ℎ are set to 3,
100us, 320us, respectively. The 𝑅𝑡𝑜 of Go-Back-N is set to 10ms.

5.2 Various Data Center Traffic Evaluation
PortFC has low latency and good FCT. Figure 9 shows the FCT
on three traffic patterns.We draw two key conclusions. First, PortFC

Avg P95 P99 P999

100

101

FC
T(

ms
)

PFC*
PortFC
IRN
Go-Back-N

(a) Hadoop

Avg P95 P99 P999

100

101

FC
T(

ms
)

PFC*
PortFC
IRN
Go-Back-N

(b) Storage

Avg P95 P99 P999

100

101

FC
T(

ms
)

PFC*
PortFC
IRN
Go-Back-N

(c) WebSearch

Figure 9: Flow completion time (FCT) under 𝐵𝐶𝑢𝑏𝑒 (4, 1).

achieves the lowest average and tail FCT across all three patterns.
Specifically, PortFC reduces the average and tail FCT by 11.7%-
69.2% and 16.9%-41.3% respectively, compared with the second-best
method, i.e. IRN. Those figures are much larger compared with
PFC*, i.e. 49.9%-87.3% and 53.3%-87.7%. Second, the average FCT
reduction achieved by PortFC is more highlighted with a larger
proportion of long flows. Storage and WebSearch contain more
long flows, consequently, the average FCT reduction achieved by
PortFC over IRN is increased from the 11.7% on Hadoop to 40.9%
on Storage and 69.2% on WebSearch, respectively.

We also separate the impact of incast traffic, as shown in the
dashed lines of Figure 11. Even though the performance of IRN
is second only to that of the best PortFC, its completion time for
small flows is not ideal because the timeout threshold setting can-
not simultaneously satisfy both low latency and high throughput.
Although PFC* leverages multiple queues to eliminate deadlocks,
its performance remains poor due to the impact of HoLB in BCube.
PortFC maintains a low queue length. In Figure 10, PortFC
maintains the shortest queue length at the switch ports compared
with other methods, which not only reduces the queuing time of
packets in the network but also prevents packet loss due to buffer
overflow. It is evident that without per-port flow control algorithm,
the queue length at the switch can reach MB levels, leading to
packet loss in the network.
PortFC has high throughput performance. Figure 12 shows
that, in Storage, PFC* frequently encounters HoLB issues due to the
more long flows, and the average throughput of PortFC outperforms
that of PFC* by about 8 times. PortFC outperforms PFC* by about 2
times in other scenarios. Compared to IRN and Go-Back-N, PortFC
outperforms them by 1.7-2.3 times and 2.4-3.9 times, respectively.

5.3 Large-Scale Simulation for Scalability
Evaluation

We also conducted larger-scale experiments to verify the scalabil-
ity of PortFC. The 𝐵𝑐𝑢𝑏𝑒 (8, 1) is composed of 64 servers and 16
switches.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA P. Cao et al.

1.00 1.05 1.10 1.15 1.20 1.25 1.30
Time(ns) 1e8

0

200

400

600

800

1000

1200

Qu
eu
e

Le
ng

th
(K

B)

PFC*
PortFC
IRN
Go-Back-N

(a) Hadoop

1.00 1.05 1.10 1.15 1.20 1.25 1.30
Time(ns) 1e8

0

200

400

600

800

1000

1200

1400

1600

Qu
eu
e

Le
ng

th
(K

B)

PFC*
PortFC
IRN
Go-Back-N

(b) Storage

1.00 1.05 1.10 1.15 1.20 1.25 1.30
Time(ns) 1e8

0

200

400

600

800

Qu
eu
e

Le
ng

th
(K

B)

PFC*
PortFC
IRN
Go-Back-N

(c) WebSearch

Figure 10: The graph of port queue length variation over time under 𝐵𝐶𝑢𝑏𝑒 (4, 1).

10 2 10 1 100 101 102

Flow Completion Time (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

PortFC
IRN
Go-Back-N
PFC*

(a) Hadoop

10 2 10 1 100 101

Flow Completion Time (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

PortFC
IRN
Go-Back-N
PFC*

(b) Storage

10 2 10 1 100 101 102

Flow Completion Time (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

PortFC
IRN
Go-Back-N
PFC*

(c) WebSearch

Figure 11: The CDF of FCT under 𝐵𝐶𝑢𝑏𝑒 (4, 1). The dashed
lines represent the incast traffic pattern.

Poisson Incast0

4

8

12

Th
ro

ug
hp

ut
(G

bp
s)

PFC*
PortFC
IRN
Go-Back-N

(a) Hadoop

Poisson Incast0

4

8

12

Th
ro

ug
hp

ut
(G

bp
s)

PFC*
PortFC
IRN
Go-Back-N

(b) Storage

Poisson Incast0
4
8

12
16

Th
ro

ug
hp

ut
(G

bp
s)

PFC*
PortFC
IRN
Go-Back-N

(c) WebSearch

Figure 12: Average throughput under 𝐵𝐶𝑢𝑏𝑒 (4, 1).

In the 𝐵𝑐𝑢𝑏𝑒 (8, 1) scenario, incast traffic involves 32 servers si-
multaneously sending data to one server, which is a higher degree
of incast compared to the 𝐵𝑐𝑢𝑏𝑒 (4, 1) topology, where 8 servers
send data to one server. Figure 13 shows that PortFC significantly
reduces FCT compared to the PFC*, IRN and Go-Back-N algorithms.
Compared to Go-Back-N and IRN for lossy RDMA, PortFC reduces
the average FCT by at most 96.5% and 41.7% respectively, and re-
duces the 99.9th percentile tail latency by at most 97.9% and 16.6%
respectively. Compared to PFC* for lossless RDMA, PortFC reduces
the average FCT and 99.9th percentile tail latency by at most 19.8%
and 85.5% respectively.

Avg P95 P99 P999

100

101

102

FC
T(

ms
)

PFC*
PortFC
IRN
Go-Back-N

(a) Hadoop

Avg P95 P99 P999

100

101

102

FC
T(

ms
)

PFC*
PortFC
IRN
Go-Back-N

(b) Storage

Avg P95 P99 P999

101

102

FC
T(

ms
)

PFC*
PortFC
IRN
Go-Back-N

(c) WebSearch

Figure 13: FCT under 𝐵𝑐𝑢𝑏𝑒 (8, 1).

In Figure 13, observing the tail latency of the Go-Back-N al-
gorithm under the three traffic patterns, it can be found that in
the WebSearch scenario, the 99.9th percentile FCT is significantly
higher than the 99th percentile and 95th percentile FCT compared
to the other two scenarios. This is because the Poisson traffic gener-
ated by the WebSearch traffic contains more long flows, exacerbat-
ing network congestion, leading to more packet loss, and extending
the 99.9th percentile FCT.

Furthermore, PortFC demonstrates more stable performance
across different traffic scenarios. As shown in Figure 13(c), the tail
latency difference between the Go-Back-N algorithm and IRN and
PortFC is much larger in the WebSearch traffic model compared
to the Hadoop and Storage traffic patterns. This is because Web-
Search traffic contains more MB-sized long flows than the other
two patterns (as referenced in Figure 8), indicating that longer Pois-
son traffic results in more severe network congestion and greater
damage to tail latency. As a result, applying the PortFC in the Bcube
network for flow control can keep the FCT consistent across the
three traffic model scenarios.

Due to the WebSearch traffic containing more long flows com-
pared to Hadoop and Storage, it can be observed that the Poisson
traffic generated by WebSearch achieves higher throughput when

PortFC: Designing High-performance Deadlock-free BCube Networks ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Poisson Incast0

2

4

6

Th
ro

ug
hp

ut
(G

bp
s)

PFC*
PortFC
IRN
Go-Back-N

(a) Hadoop

Poisson Incast0

2

4

6

Th
ro

ug
hp

ut
(G

bp
s)

PFC*
PortFC
IRN
Go-Back-N

(b) Storage

Poisson Incast0
4
8

12
16
20

Th
ro

ug
hp

ut
(G

bp
s)

PFC*
PortFC
IRN
Go-Back-N

(c) WebSearch

Figure 14: Average throughput under 𝐵𝑐𝑢𝑏𝑒 (8, 1).

competing with incast traffic. This can be corroborated by com-
paring the average throughput of Poisson traffic in Figure 14(c),
Figure 14(a), and Figure 14(b).

Figure 14 also illustrates that, across the three traffic scenarios,
PortFC significantly improves the average throughput of traffic com-
pared to PFC*, IRN and Go-Back-N designs. Taking the WebSearch
scenario in Figure 14(c) as an example, compared to Go-Back-N
and IRN, PortFC increases the average throughput under Poisson
traffic by 4.7 times and 2.3 times, respectively, and increases it under
incast traffic by 21.6 times and 1.9 times, respectively. Compared
to PFC*, PortFC increases the average throughput by 2.0 times and
2.2 times under Poisson traffic and incast traffic, respectively.

6 Related Work
Both BCube and high-performance RDMA networks are hot topics.
Although no solution efficiently addresses the deadlock and HoLB
problems in BCube topologies, previous works offer interesting and
meaningful insights.
Flow Control: Some methods are designed based on PFC [9, 26],
which have static configurations for the mapping from flows to
queues in switches so they are in lack of flexibility. The other meth-
ods [10, 23, 28], which dynamically allocates queues for different
flows, are much more flexible, but suffers from the relatively low
performance.
Facing Deadlock: To avoid deadlock, previous works attempt to
avoid the appearance of CBD [14, 20, 38, 48, 50, 52]. They design
special routing rules and avoid CBD occurrence, but performance
and throughout are both impacted negatively. Other works adopts
deadlock recovery [36, 40], but cannot solve the root cause of this
issue. The last one, GFC [35], avoids the hold and wait condition
by balancing the sending rate and draining rate. However, GFC
requires timers and rate limiters, which make its complexity signif-
icantly higher. None of these methods considers the characteristics
of BCube, and therefore cannot eliminate deadlocks and HoLB
simultaneously in BCube.
Facing HoLB: For mitigating the HoLB, the mainstream
schemes [13, 17, 24, 30] are all based on buffer management.
PLB [24], a PFC-aware load balancer, tries to reroute traffics when
sending of switch is paused by PFC to mitigate HoLB. Greedy PFC
(G-PFC) [13] adopts the greedy strategy to reduce the appearance
of HoLB, which means that when congestion occurs, G-PFC always
tries to pause queues with the lowest priorities. BFC [17] uses a
few metadata to manage buffers efficiently so that HoLB can be
mitigated relatively. However, none of these methods take into
account that, in addition to switches, servers acting as intermediate
forwarding nodes can also become HoLB points in BCube.

7 Conclusion
RDMA technology used in BCube still faces high retransmission
overhead, Head-of-Line Blocking and deadlock problems. Existing
solutions for traditional data centers cannot simultaneously ad-
dress these issues. By implementing a Pause/Resume control signal,
per-port queue allocation, a next-hop-based flow control mecha-
nism, and advanced queue scheduling, PortFC eliminates HoLB
and deadlocks while ensuring zero retransmissions. Our evaluation
shows that PortFC significantly outperforms state-of-the-art lossy
and lossless RDMA methods, highlighting its potential to enhance
BCube network efficiency and reliability.

Acknowledgments
We sincerely thank anonymous reviewers for their helpful com-
ments. This research is supported by theNational Key R&DProgram
of China (2022YFB2702800), the National Natural Science Founda-
tion of China under Grant Numbers 62325205 and 62172204, the
Key Program of Natural Science Foundation of Jiangsu under grant
No. BK20243053, the Nanjing University-China Mobile Communi-
cations Group Co., Ltd. Joint Institute.

References
[1] 2011. IEEE Standard for Local and Metropolitan Area Networks—Virtual Bridged

Local Area Networks – Amendment: Priority-based Flow Control.
[2] 2014. Infniband Architecture Specifcation Volume 1 Release 1.2.1 Annex A17:

RoCEv2. https://cw.infinibandta.org/document/dl/7781
[3] Vamsi Addanki, Wei Bai, Stefan Schmid, and Maria Apostolaki. 2024. Reverie:

Low Pass Filter-Based Switch Buffer Sharing for Datacenters with RDMA and
TCP Traffic. In 21th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 24), Santa Clara, CA.

[4] Anurag Agrawal and Changhoon Kim. 2020. Intel tofino2–a 12.9 tbps p4-
programmable ethernet switch. In 2020 IEEE Hot Chips 32 Symposium (HCS).
IEEE Computer Society, 1–32.

[5] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre, Paramvir
Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,
et al. 2023. Empowering azure storage with {RDMA}. In 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23). 49–67.

[6] BROADCOM. 2019. BCM56990 Series. https://www.broadcom.com/products/
ethernet-connectivity/switching/strataxgs/bcm56990-series.

[7] Peirui Cao, Shizhen Zhao, Min Yee The, Yunzhuo Liu, and Xinbing Wang. 2021.
TROD: Evolving from electrical data center to optical data center. In 2021 IEEE
29th International Conference on Network Protocols (ICNP). IEEE, 1–11.

[8] Peirui Cao, Shizhen Zhao, Dai Zhang, Zhuotao Liu, Mingwei Xu, Min Yee Teh,
Yunzhuo Liu, Xinbing Wang, and Chenghu Zhou. 2023. Threshold-based routing-
topology co-design for optical data center. IEEE/ACM Transactions on Networking
31, 6 (2023), 2870–2885.

[9] Wenxue Cheng, Kun Qian, Wanchun Jiang, Tong Zhang, and Fengyuan Ren. 2020.
Re-architecting Congestion Management in Lossless Ethernet. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 20). USENIX
Association, Santa Clara, CA, 19–36. https://www.usenix.org/conference/nsdi20/
presentation/cheng

[10] Inho Cho, Keon Jang, and Dongsu Han. 2017. Credit-Scheduled Delay-Bounded
Congestion Control for Datacenters. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (Los Angeles, CA, USA) (SIGCOMM
’17). Association for Computing Machinery, New York, NY, USA, 239–252. https:
//doi.org/10.1145/3098822.3098840

[11] Wei-Kang Chung, Yun Li, Chih-Heng Ke, Sun-Yuan Hsieh, Albert Y Zomaya,
and Rajkumar Buyya. 2021. Dynamic parallel flow algorithms with centralized
scheduling for load balancing in cloud data center networks. IEEE Transactions
on Cloud Computing 11, 1 (2021), 1050–1064.

[12] Ultra Ethernet Consortium. 2023. Overview of and Motivation for the Forthcoming
Ultra Ethernet Consortium Specification.

[13] Zhenguo Cui and Steven Y. Rim. 2020. G-PFC: A Packet-Priority Aware
PFC Scheme for the Datacenter. In 2020 21st Asia-Pacific Network Operations
and Management Symposium (APNOMS). 385–388. https://doi.org/10.23919/
APNOMS50412.2020.9236778

[14] Jens Domke, Torsten Hoefler, and Wolfgang E. Nagel. 2011. Deadlock-Free
Oblivious Routing for Arbitrary Topologies. In 2011 IEEE International Parallel &

https://cw.infinibandta.org/document/dl/7781
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
https://www.usenix.org/conference/nsdi20/presentation/cheng
https://www.usenix.org/conference/nsdi20/presentation/cheng
https://doi.org/10.1145/3098822.3098840
https://doi.org/10.1145/3098822.3098840
https://doi.org/10.23919/APNOMS50412.2020.9236778
https://doi.org/10.23919/APNOMS50412.2020.9236778

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA P. Cao et al.

Distributed Processing Symposium. 616–627. https://doi.org/10.1109/IPDPS.2011.
65

[15] Linux Foundation. 2015. Data Plane Development Kit (DPDK). http://www.
dpdk.org

[16] Prateesh Goyal, Preey Shah, Naveen Kr Sharma, Mohammad Alizadeh, and
Thomas E Anderson. 2019. Backpressure flow control. In Proceedings of the 2019
Workshop on Buffer Sizing. 1–3.

[17] Prateesh Goyal, Preey Shah, Naveen Kr. Sharma, Mohammad Alizadeh, and
Thomas E. Anderson. 2020. Backpressure Flow Control. In Proceedings of the
2019 Workshop on Buffer Sizing (Palo Alto, CA, USA) (BS ’19). Association for
Computing Machinery, New York, NY, USA, Article 4, 3 pages. https://doi.org/
10.1145/3375235.3375239

[18] Prateesh Goyal, Preey Shah, Naveen Kr Sharma, Kevin Zhao, Georgios Nikolaidis,
Mohammad Alizadeh, and Thomas E Anderson. 2022. Backpressure flow control.
In NSDI. 779–805.

[19] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,
Chen Tian, Yongguang Zhang, and Songwu Lu. 2009. BCube: a high performance,
server-centric network architecture for modular data centers. In Proceedings of
the ACM SIGCOMM 2009 conference on Data communication. 63–74.

[20] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Pad-
hye, and Marina Lipshteyn. 2016. RDMA over commodity ethernet at scale. In
Proceedings of the 2016 ACM SIGCOMM Conference. 202–215.

[21] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu
Lu. 2008. Dcell: a scalable and fault-tolerant network structure for data centers.
In Proceedings of the ACM SIGCOMM 2008 conference on Data communication.
75–86.

[22] Deke Guo. 2016. Aggregating uncertain incast transfers in BCube-like data
centers. IEEE Transactions on Parallel and Distributed Systems 28, 4 (2016), 934–
946.

[23] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.
Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-architecting datacenter
networks and stacks for low latency and high performance. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communication (Los
Angeles, CA, USA) (SIGCOMM ’17). Association for Computing Machinery, New
York, NY, USA, 29–42. https://doi.org/10.1145/3098822.3098825

[24] Jinbin Hu, Chaoliang Zeng, Zilong Wang, Hong Xu, Jiawei Huang, and Kai Chen.
2023. Load Balancing in PFC-Enabled Datacenter Networks. In Proceedings of the
6th Asia-PacificWorkshop on Networking (Fuzhou, China) (APNet ’22). Association
for Computing Machinery, New York, NY, USA, 21–28. https://doi.org/10.1145/
3542637.3542641

[25] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo, Kun Tan, Jitendra Padhye,
and Kai Chen. 2017. Tagger: Practical PFC deadlock prevention in data center net-
works. In Proceedings of the 13th International Conference on emerging Networking
EXperiments and Technologies. 451–463.

[26] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo, Kun Tan, Jitendra Padhye,
and Kai Chen. 2017. Tagger: Practical PFC Deadlock Prevention in Data Center
Networks. https://doi.org/10.1145/3143361.3143382. In Proceedings of the 13th
International Conference on Emerging Networking EXperiments and Technologies
(Incheon, Republic of Korea) (CoNEXT ’17). Association for ComputingMachinery,
New York, NY, USA, 451–463. https://doi.org/10.1145/3143361.3143382

[27] B Karagounis. 2020. Introducing the Microsoft Azure Modular Datacenter.
[28] Wenxue Li, Chaoliang Zeng, Jinbin Hu, and Kai Chen. 2023. Towards Fine-

Grained and Practical Flow Control for Datacenter Networks. In 2023 IEEE 31st
International Conference on Network Protocols (ICNP). 1–11. https://doi.org/10.
1109/ICNP59255.2023.10355582

[29] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. 2019. HPCC:
High precision congestion control. In Proceedings of the ACM Special Interest
Group on Data Communication. 44–58.

[30] Kexin Liu, Chen Tian, Qingyue Wang, Hao Zheng, Peiwen Yu, Wenhao Sun,
Yonghui Xu, Ke Meng, Lei Han, Jie Fu, et al. 2021. Floodgate: Taming incast
in datacenter networks. In Proceedings of the 17th International Conference on
emerging Networking Experiments and Technologies. 30–44.

[31] Mengjie Lv, Jianxi Fan, Weibei Fan, and Xiaohua Jia. 2022. Fault diagnosis based
on subsystem structures of data center network BCube. IEEE Transactions on
Reliability 71, 2 (2022), 963–972.

[32] Mengjie Lv, Jianxi Fan, Weibei Fan, and Xiaohua Jia. 2022. A high-performantal
and server-centric based data center network. IEEE Transactions on Network
Science and Engineering 10, 2 (2022), 592–605.

[33] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Krishna-
murthy, Sylvia Ratnasamy, and Scott Shenker. 2018. Revisiting network support
for RDMA. In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication. 313–326.

[34] NVIDIA. 2023. Mellanox firmware. https://network.nvidia.com/support/
firmware/mlxup-mft.

[35] Kun Qian, Wenxue Cheng, Tong Zhang, and Fengyuan Ren. 2019. Gentle flow
control: avoiding deadlock in lossless networks. In Proceedings of the ACM Spe-
cial Interest Group on Data Communication (Beijing, China) (SIGCOMM ’19).

Association for Computing Machinery, New York, NY, USA, 75–89. https:
//doi.org/10.1145/3341302.3342065

[36] Aniruddh Ramrakhyani, Paul V. Gratz, and Tushar Krishna. 2018. Synchro-
nized Progress in Interconnection Networks (SPIN): A New Theory for Deadlock
Freedom. In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). 699–711. https://doi.org/10.1109/ISCA.2018.00064

[37] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.
2015. Inside the social network’s (datacenter) network. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication. 123–137.

[38] J.C. Sancho, A. Robles, and J. Duato. 2004. An effective methodology to improve
the performance of the up*/down* routing algorithm. IEEE Transactions on
Parallel and Distributed Systems 15, 8 (2004), 740–754. https://doi.org/10.1109/
TPDS.2004.28

[39] Alexander Shpiner, Eitan Zahavi, Omar Dahley, Aviv Barnea, Rotem Damsker,
Gennady Yekelis, Michael Zus, Eitan Kuta, and Dean Baram. 2017. RoCE rocks
without PFC: Detailed evaluation. In Proceedings of theWorkshop on Kernel-Bypass
Networks. 25–30.

[40] Alex Shpiner, Eitan Zahavi, Vladimir Zdornov, Tal Anker, andMatty Kadosh. 2016.
Unlocking Credit LoopDeadlocks. In Proceedings of the 15th ACMWorkshop onHot
Topics in Networks (Atlanta, GA, USA) (HotNets ’16). Association for Computing
Machinery, New York, NY, USA, 85–91. https://doi.org/10.1145/3005745.3005768

[41] Cha Hwan Song, Xin Zhe Khooi, Raj Joshi, Inho Choi, Jialin Li, and Mun Choon
Chan. 2023. Network load balancing with in-network reordering support for
rdma. In Proceedings of the ACM SIGCOMM 2023 Conference. 816–831.

[42] Yuzhen Su, Jiao Zhang, Zirui Wan, Pingping Lin, Yunpeng Zhang, Tian Pan, and
Tao Huang. 2023. Hermes: An Efficient Building Block for RDMA Incast in Data-
centers. In 2023 9th International Conference on Computer and Communications
(ICCC). 2306–2311. https://doi.org/10.1109/ICCC59590.2023.10507657

[43] Versa Technology. 2021. 400G Ethernet: It’s Here, and It’s Huge. http://www.
versatek.com/400g-ethernet-its-here-and-its-huge/.

[44] Guijuan Wang, Yazhi Zhang, Jiguo Yu, Meijie Ma, Chunqiang Hu, Jianxi Fan,
and Li Zhang. 2024. HS-DCell: A Highly Scalable DCell-Based Server-Centric
Topology for Data Center Networks. IEEE/ACM Transactions on Networking
(2024).

[45] Weiyang Wang, Manya Ghobadi, Kayvon Shakeri, Ying Zhang, and Naader
Hasani. 2023. Rail-only: A Low-Cost High-Performance Network for Training
LLMs with Trillion Parameters. arXiv preprint arXiv:2307.12169v4 (2023).

[46] Yihong Wang, Weibei Fan, Jianxi Fan, Jingya Zhou, and Baolei Cheng. 2024.
Subsystem Reliability Analysis of Data Center Network BCube. IEEE Transactions
on Reliability (2024).

[47] Yifan Yuan, Jinghan Huang, Yan Sun, Tianchen Wang, Jacob Nelson, Dan RK
Ports, Yipeng Wang, Ren Wang, Charlie Tai, and Nam Sung Kim. 2023. RAMBDA:
RDMA-driven Acceleration Framework for Memory-intensive 𝜇s-scale Data-
center Applications. In 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 499–515.

[48] Xiao Zhang, Peirui Cao, Yongxi Lyu, Qizhou Zhang, Shizhen Zhao, Xinbing
Wang, and Chenghu Zhou. 2023. FC+: Near-optimal Deadlock-free Expander
Data Center Networks. In 2023 IEEE Intl Conf on Parallel & Distributed Processing
with Applications, Big Data & Cloud Computing, Sustainable Computing & Commu-
nications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom).
IEEE, 1–9.

[49] Shizhen Zhao, Peirui Cao, and Xinbing Wang. 2021. Understanding the perfor-
mance guarantee of physical topology design for optical circuit switched data
centers. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 5, 3 (2021), 1–24.

[50] Shizhen Zhao, Qizhou Zhang, Peirui Cao, Xiao Zhang, Xinbing Wang, and
Chenghu Zhou. 2023. Flattened clos: Designing high-performance deadlock-
free expander data center networks using graph contraction. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 23). 663–683.

[51] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. ACM
SIGCOMM Computer Communication Review 45, 4 (2015), 523–536.

[52] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments.
In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication (London, United Kingdom) (SIGCOMM ’15). Association for Com-
putingMachinery, New York, NY, USA, 523–536. https://doi.org/10.1145/2785956.
2787484

https://doi.org/10.1109/IPDPS.2011.65
https://doi.org/10.1109/IPDPS.2011.65
http://www.dpdk.org
http://www.dpdk.org
https://doi.org/10.1145/3375235.3375239
https://doi.org/10.1145/3375235.3375239
https://doi.org/10.1145/3098822.3098825
https://doi.org/10.1145/3542637.3542641
https://doi.org/10.1145/3542637.3542641
https://doi.org/10.1145/3143361.3143382
https://doi.org/10.1145/3143361.3143382
https://doi.org/10.1109/ICNP59255.2023.10355582
https://doi.org/10.1109/ICNP59255.2023.10355582
https://network.nvidia.com/support/firmware/mlxup-mft
https://network.nvidia.com/support/firmware/mlxup-mft
https://doi.org/10.1145/3341302.3342065
https://doi.org/10.1145/3341302.3342065
https://doi.org/10.1109/ISCA.2018.00064
https://doi.org/10.1109/TPDS.2004.28
https://doi.org/10.1109/TPDS.2004.28
https://doi.org/10.1145/3005745.3005768
https://doi.org/10.1109/ICCC59590.2023.10507657
http://www.versatek.com/400g-ethernet-its-here-and-its-huge/
http://www.versatek.com/400g-ethernet-its-here-and-its-huge/
https://doi.org/10.1145/2785956.2787484
https://doi.org/10.1145/2785956.2787484

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Bring BCube into Focus
	2.2 Deploy RDMA over Ethernet in BCube
	2.3 Goals

	3 Design
	3.1 BCube Structure
	3.2 Per-port Queue Allocations
	3.3 Per-port Flow Control
	3.4 Deadlock-free Strategy

	4 Implementation
	4.1 Switch Queue Management
	4.2 Server Queue Management

	5 Evaluation
	5.1 Experimental Setup
	5.2 Various Data Center Traffic Evaluation
	5.3 Large-Scale Simulation for Scalability Evaluation

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

